
#744 1

Identity Authentication Using Modified k-NN algorithm

And

New York City Taxi Driving Strategy

Team 744

#744 2

Table of Contents

1. Summary for Problem I

2. Summary for Problem II

3. Model for Problem I

a) Introduction

b) Assumptions and Justifications

c) Symbols

d) Building the Model

e) Results from the Model

f) Testing the Model

g) Strengths and Weakness

4. Model for Problem II

a) Introduction

b) Assumptions and Justifications

c) Symbols

d) Building the Model

e) Results from the Model

f) Testing the Model

g) Strengths and Weakness

h) Solution to Question 2: A Letter to Taxi Drivers

5. Citations

6. Appendix

#744 3

1. Summary for Problem I

We are trying to determine people’s identity using their typing patterns. We are given 3

sets of typing data: 1) 8 quotes and 4 paragraphs where the person’s identity is know, 2) 6 quotes

where the person’s identity is unknown, 3) 3 paragraphs where the person’s identity is unknown.

Our goal is to match samples in categories 2 and 3 to the personal identities in category 1.

We modify the k-NN algorithm to solve this problem. We first transform the typing

samples to data points by dividing typed letters into groups of two. We convert the letters into

integers, and graph the ones in the category 1 on a plot. Since 11 officers participate in category

1, we get 11 clusters on the graph. We then put each data point in categories 2 and 3 as testing

points into the graph, and calculate the average distance of each cluster to the testing data points.

Running through all the testing data points for one person in categories 2 or 3 and adding the

average distances, we get 11 numbers representing the sum of the average distances for each

cluster to reach the data points in this testing sample. Due to the fact that the number of testing

data points varies between testing samples, we calculate the relative frequency of the sums by

dividing them over the mean of the 11 sums.

When analyzing the results, we first find the lowest relative percentage in each of the

testing samples. If there is no conflict between samples, then we assign the sample to the

corresponding identity with the lowest percentage. For all the conflicting samples, we compare

relative frequencies and assign the testing sample with the lowest percentage to the identity.

In the end, we are able to match the samples in categories 2 and 3 to identities in category

1. We test our model with our own data, and find the model to be 66.7% accurate. Based on our

model, we determine that k-NN can be further utilized in the area of pattern recognition.

#744 4

2. Summary for Problem II

For this problem, we are given a big data set on taxi runs in NYC. Based on the given

data, we give advice to taxi drivers for where they should drive towards in order to look for more

customers from a certain location during a certain time in the day.

We first pre-organize the raw data. We determine that the distance from the taxi driver to

the pickup location of the guest, the time spent on sending the guest to the destination, the fare

that the guest paid for the trip, and the tip the guest paid all have an effect on the value of the

customer. Thus, we assign weights to these factors and give scores to each data point using

	
Scoretime =wtime ×time+wd ×d +wf × fare+wtip ×tip .

We also divide the map of NYC and nearby areas into smaller regions and give each

region scores for each hour of the day by adding all the data points’ scores that fall into the hour

in this region.

When inputting the time and a driver’s location in longitudes and latitudes, our model

analyzes which region has the highest score for the driver, and advice the driver to drive to that

region. We set two examples for starting location – the Statue of Liberty and the Penn Station, at

12:00am-1:00 pm – and the algorithm suggests both drivers drive to region 48359, which is

located in Southern NYC.

For question 2, from the perspective of the taxi company, we suggest the drivers do the

following: decrease the amount of time the taxi remains unoccupied, meet as much taxi needs as

possible, and drive to Southern NYC if they don’t know where to look for new customers.

#744 5

3. Model for Problem I

3-a Introduction

 Many methods are used for identity authentication, such as: passwords, facial

recognition, and pattern recognition. Today, people’s typing patterns can also be a useful tool for

verification. In this question, we are given 11 people’s typing practice results for 14 English

quotes and 6 paragraphs composed of random characters. The results are divided into 3

categories: 1) 8 quotes and 4 paragraphs where the person’s identity is known, 2) 6 quotes where

the person’s identity is unknown, 3) 3 paragraphs where the person’s identity is unknown. We

are given their WPM values, accuracies, and a screenshot of their results. Using the given

identities in the first category, we are trying to match the results in the second and third

categories to the identities.

3-b Assumptions and Justifications

1) Since typing patterns can verify a person’s identity, we assume that when we plot the typing

test results onto a graph, the data points for the same person will cluster close to each other.

In addition, person 1’s cluster should be relatively distinct to person 2’s cluster.

3-c Symbols

 No symbols are used.

3-d Building the Model

 In order to use the data in the screenshots of people’s typing practices, we first convert

them into word documents using www.onlineocr.com. For each practice typed by each person,

#744 6

we convert the letters and punctuations into integers, and store the results in CSV files because

CSV is easier to program with.

We determine that grouping typed letters in groups of two and comparing the groups of

different people is a sufficient way to identity people’s typing patterns. For example, if Person A

has a tendency to mistype “t” with “y”, then this person would, likely, type “YhThe” instead of

“The”. In this way, Person A will have data points “Yh” and “Th” while others only have “Th”.

The distinct “Yh” point allows us to identify Person A.

After grouping typed letters and punctuations into groups of two, we represent them

using integers relative to their positions on the keyboard. We add a string at the end of the group

indicating which person typed the sample (see code in Appendix 1). For example, if Person A

types “Dream big”:

Dream big

↓

(30,32,A)

(32,39,A)

(39,26,A)

(26,55,A)

(55,54,A)

(54,57,A)

(57,40,A)

(40,34,A)

Figure 1: Converting Characters to Integers

#744 7

 In assumption 1, we assume that when we plot the typing results onto a graph, the data

points for the same person will cluster close to each other. Thus, when another data point for

Person A enters the graph, it will locate near the Person A’s cluster. We utilize a modified k-NN

(k-Nearest Neighbors) machine learning algorithm to meet our goal. Instead of counting the k

nearest data points close to one data point, we calculate the distances from these points to the one

data point.

We first graph the data points of the 11 officers in the given identity set. According to our

assumption, that should form 11 clusters. When we put a testing data point (a group of two

integers) into the graph, k-NN allows us to add distances of all the given data points within a 20

distance range to this testing data point, and we add the distances by identity. Since each person

in the given identity set has a different amount of data points, we divide the sum of the distances

by the number of data points in each cluster to get an average distance from a cluster to a single

testing data point. Running through all the testing data points for each testing sample and adding

the average distances together, we get the 11 total average distances for each sample. Because

some people have more testing data points than others, thus resulting in overall larger total

average distances for all the clusters, we divide each total average over the mean value of the

averages to get a relative percentage. A lower relative percentage means that the testing sample

is closer to the cluster.

By comparing each testing sample’s relative percentages for each cluster, we are able to

match the testing samples with the known identities (code in Appendix 2).

#744 8

3-e Results from the Model

 When analyzing the results, we first find the lowest relative percentages in each of the

testing samples. If there is no conflict between samples—for example, if sample A’s lowest

relative percentage is Person 1 while all the other samples’ are Person 2—then we assign the

samples to the corresponding identities (assign sample A as Person 1). For all the conflicting

samples, we compare their relative frequencies for this identity and assign the testing sample

with the lowest percentage to the identity.

Matching results from the Model

(Full result in Appendix 3)

Participant AI Deduction

A Person 2

B Person 9

C Person 5

D Person 3

E Person 4

F Person 11

G Person 6

H Person 8

I Person 10

J Person 7

K Person 1

Q Person 10

R Person 11

S Person 8

T Person 1

U Person 6

V Person 5

#744 9

W Person 3

X Person 7

Y Person 9

Z Person 4

Table 1: Results for P1

3-f Testing the Model

 In order to test this model, 3 members of our team generated training sets and test sets.

Each of us typed 5 same quotes on https://www.keyhero.com and another different quote for

testing. The numbers in the chart are the sums of the distances from one given cluster (K, J, or Y)

to the data points in the testing samples. A lower value means a closer connection between the

given cluster and the testing sample.

Participants Test 1 (K’s) Test 2 (Y’s) Test 3 (J’s) Training Size
K 1044.19 1403.56 1507.04 1845
J 1061.74 1422.05 1525.74 1925
Y 1046.89 1403.14 1506.75 1948

Testing Size 200 242 257 /
AI Deduction K Y Y /

Table 2: Testing P1’s model

 In this case, our model is 66.7% accurate.

The model identifies J’s testing sample to Y. This may be due to the fact that J used Y’s

computer for typing the test sample and he is not familiar with Y’s keyboard.

3-g Strengths and Weaknesses

Strength:

1) Our model analyzes people’s typing patterns for every 2 letters, which reflects accuracy.

2) Our model allows computer to do the work instead of human, which eliminates human error.

#744 10

3) Our modified k-NN algorithm uses weight, which is able to cancel out the imbalance of the

training set size.

Weaknesses:

1) k-NN algorithm is lazy learning, and its classification is not normalized.

2) Our model does not utilize the typing speeds and accuracy percentages of the typing samples,

which one normally associates with distinguishing different people’s typing samples.

According to MOOC’s personal identification technology [2], there is a relationship between

the time one hits two consecutive keys to determining one’s identity. Thus, the neglect of

these provided condition is a weakness of our model.

#744 11

4. Model for Problem II

4-a Introduction

Taxis have become an indispensable kind of passenger transportation in the cities.

However, the multi-point and multi-stage development of the cities and difference in regional

development lead to the difference in distribution of the taxis and the need for them. Therefore,

when taxis are vacant, where drivers should go becomes a widely discussed issue in order to

improve the service level of taxis and more importantly, the efficiency of the social

transportation. In the first part of this question, given the taxi trip record data for Green Taxi in

New York City, we manage to figure out the optimal decision for the drivers about where to go

when their cars are vacant. In the second part, as a head of a taxi company, we try to give advice

to the drivers, combining the conclusion we obtain from the first question and consideration on

both social business factors.

4-b Assumptions and Justifications

1) For question one, we assume that the drivers are looking for gaining the most money with the

least time and distance driven. We assume that different regions have different needs for

taxis. Also, we assume that the distance between the pickup location and destination is a

straight line, which can be determined using longitude and latitude of the locations.

2) For problem two, we assume that the taxi company wants to fulfill the goal of letting more

people use their taxis while ignoring the driver’s personal benefits. We assume that they want

to decrease the amount of time of taxi running without a customer.

#744 12

4-c Symbols

	wtime Weight applied to time

	wd Weight applied to distance

	
w f Weight applied to fare

	
wtip Weight applied to tip

	d Distance to pick up the guest

		latmax Maximum latitude in given data

		latmin Minimum latitude in given data

		longmax Maximum longitude in given data

		longmin Minimum longitude in given data

	s The length of the divided region
Table 3: Symbols used in P2

4-d Building the Model

In this problem, we are given data on NYC’s taxi service. The data includes information

about the pickup location, the dropoff location, the number of passenger, and fare amount. We

give each pickup point a value, considering the key parts below: the distance from the taxi driver

to the pickup location of the guest, the time spent on sending the guest to destination, the fare

that the guest paid for the trip, and the tip the guest paid.

We consider these key parts to have different weights. We determine that the fare is the

most important factor: how much the trip is worth determines how much money the drivers can

make. The second important factor is the time of the trip. We give this a negative factor, since

the longer the traveling time is, the less efficient the driver will be (the fare per mile gets lower

when drivers drive longer distances). The distance to pickup location is the third most important

factor, because this influences the efficiency of the driver by making him/her waste time. The

#744 13

least important factor is the tip, because some guest would pay tips and some would not--this is

mostly random.

With the above reasons, we get the following weights for time, distance, fare, and tip.

		w f = 10 , 		wd = −8 ,		wtime = −7 , 		wtip = 3

Another part of the pre-organization of the given data is to divide the area of the whole

map. Using the maximum and minimum of the longitude and latitude of the locations, we set the

frame of the map, and divided the map into many little square regions with a 0.02 difference in

both latitude and longitude, which is approximately equivalent to 2.22 kilometers. Thus, the map

is divided with:

		(latmax − latmin)÷ s rows

and 		(longmax − longmin)÷ s columns

After dividing the map, we give each region a score. We also take into account the time

when the taxi is unoccupied. Different times during the day can have different effects on the

need for taxi.

	
Scoretime =wtime ×time+wd ×d +wf × fare+wtip ×tip Equation 1

We then calculate the score for each potential customer in each region. Adding the scores

of all guests in the region, we get a score for the whole region.

		Scoreregion ,time = Scorealldatain theregion∑ Equation 2

After inputting the location of the driver (in latitude and longitude), the program

compares the scores of the all the regions on the map, and returns the one with the highest score.

That’s the region we advise the driver to drive to (see code in Appendix 5).

#744 14

4-e Results from the Model

 Since our model depends on the location of the driver and the time, we do not have any

results, other than our algorithm, to display. To demonstrate how our model works we put in 2

popular locations in NYC as the location of the driver, and test which region the driver should

drive to.

Location Name (Longitude, Latitude) Time Region Score
The Statue of
Liberty

(-74.0445, 40.6892) 12:00am-
1:00pm

48359

87210

 Penn Station (-76.2970, 40.2131) 12:00am-
1:00pm

48359 87347

Table 4: Results for P2

 To look for a general trend, we set the location of the driver at the Statue of Liberty and

run through all hours of the day. We find that for most time periods, region 48359 appears to

have the highest score. We find out the location of region 48359 on Google Earth.

Figure 2: The location of region 48359

#744 15

4-f Testing the Model

 Due to time limits, we are not able to find similar data to the one provided by the problem

to test our model.

4-g Strengths and Weakness

 Strengths:

1) Our model is very flexible, because we used a lot of variables that can be changed, including

the weight, the separation (the width) of the regions. Also, we can add time into account

quickly.

Weaknesses:

1) Our weight is not based on scientific research; we decide them based on our own logic.

2) The divided regions do not represent the real world effectively enough. Our algorithm gives a

region code, while the drivers in the real world would just want to go towards specific

locations such as the center of the city.

#744 16

4-h Solution to Question 2: A Letter to Taxi Drivers

Dear Drivers in Green Taxi,

Thank you for your dedication, and hope you are making profits everyday. As the head of

Green Taxi, I want to deliver to you some of the decisions the company made recently.

Firstly, we are going to emphasize the new goal of minimizing the time your taxi remains

unoccupied. Unoccupied taxies mean inefficiency to our company, and it is a disadvantage for

you as well. Driving for customer means making a profit, while running with an unoccupied taxi

is spending resources such as gasoline, electricity, and your time. I am sure that you all want to

earn as much as possible, and the company wants to do so, too. Thus, please be consciously

looking for customers when you don’t have one.

Secondly, the company wants to build a reputation of being “always there” for the

customers. What this means is that, when you see a person trying to find a taxi nearby, please

make every effort to get to the person as fast as possible. Even if this person is fairly far from

your location but no one has answered his/her request for taxi, we encourage you to drive to that

location. If we can respond to people’s needs for taxi faster, we can develop a good reputation

and an advantage in the market.

Finally, if you just finish a drive and is looking for new customer, we advise you to drive

towards South Manhattan. With a math model, we determined that that you will likely encounter

a good deal along the way.

Best,

Green Taxi

#744 17

5. Citations

[1] Andrew Maas, Chris Heather, Chuong Do, Relly Brandman, Daphne Koller, and Andrew Ng,

MOOCs and Technology to Advance Learning and Learning Research,

http://ai.stanford.edu/~amaas/papers/amaas_mooc_verified.pdf

[2] oYabea, cnblogs, Machine Learning—K Nearest Neighbor (KNN) Algorithm,

http://www.cnblogs.com/ybjourney/p/4702562.html

[3] C H Chen, Handbook of Patter Recognition and Computer Vision, 5th Edition, 2015,

https://books.google.com/books?hl=en&lr=&id=IWzFCwAAQBAJ&oi=fnd&pg=PR7&dq=patte

rn+recognition&ots=dy5gsy0nSr&sig=jzxIG_a0d6Z4zaTojE4c08inLjY#v=onepage&q&f=false

[4] Jay Belanger, Write Right for the American Mathematical Contest in Modeling, Higher

Education Press, 2013

[5] Frank R. Giordano, William P. Fox, Steven B. Horton, A First Course in Mathematical

Modeling, China Machine Press, 2015

[6] Ye Xianyan, The Model and Facter Analysis of Effect on the Urban Taxi Ridership Based on

Geographically Weighted Regression, Southwest Jiaotong University Master Degree Thesis,

May 2017

[7] Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. Geographically weighted regression:

a method for exploring spatial nonstantionarity. Geograph- ical Analysis, 1996,28(4), 281-298

#744 18

Appendix 1: code for converting letters to integers

import csv
import xlwt
import os
import sys
location='Person01.txt'
path='/Users/***/Desktop/AoCMMTest/Given'
def readstringfiles(name):
 arr=[]
 fp = open(path+'/'+name, 'r')
 n=str(name[-5])
 array=[]
 for lines in fp.readlines():
 string=lines
 for x in range(0,len(string)-2):
 array.append(string[x])
 array.append(string[x+1])
 array.append(string[x+2])
 array.append(n)
 arr.append(array)
 array=[]
 fp.close()
 return arr
def letter2number(s):
 num=[]
 letter="1234567890-=+_)(*&^%$#@!qaswedfrtghyujkiol;p[]'/.,<>? mnbvcxz"
 if s.lower() in letter:
 return letter.index(s.lower())+1
 else:
 return 0
def array2num(arr):
 for x in range(0,len(arr)):
 for y in range(0,3):
 arr[x][y]=letter2number(arr[x][y])
 return arr
def write(arr):
 '''
 writing book
 '''
 book=xlwt.Workbook(style_compression=0)
 sheet=book.add_sheet('output',cell_overwrite_ok=True)
 for x in range(0,len(arr)):
 for y in range(0,4):
 sheet.write(x,y,arr[x][y])
 book.save(path+"/"+arr[0][3]+'.csv')
def ConvertAll():
 filelist=os.listdir(path)
 for files in filelist:
 filename=os.fsdecode(files)
 if filename.endswith(".txt"):
 write(array2num(readstringfiles(files)))

#ConvertAll()
write(array2num(readstringfiles(location)))

#744 19

Appendix 2: Python code for P1

import csv
import random
import math
import operator
import itertools
import os

path='/Users/****/Desktop/AoCMMTest/Given'
sample='/Users/****/Desktop/AoCMMTest/Test/quotes/K.csv'

def most_common(L):
 SL = sorted((x, i) for i, x in enumerate(L))
 groups = itertools.groupby(SL, key=operator.itemgetter(0))
 def _auxfun(g):
 item, iterable = g
 count = 0
 min_index = len(L)
 for _, where in iterable:
 count += 1
 min_index = min(min_index, where)
 return count, -min_index
 return max(groups, key=_auxfun)[0]

def loadDataset(filename, split, trainingSet , testSet):
 with open(filename, 'r') as csvfile:
 lines = csv.reader(csvfile)
 dataset = list(lines)
 for x in range(len(dataset)):
 for y in range(4):
 if y<3:
 dataset[x][y] = float(dataset[x][y])
 else:
 dataset[x][y] = (dataset[x][y])
 if random.random() < split:
 trainingSet.append(dataset[x])
 else:
 testSet.append(dataset[x])

def euclideanDistance(instance1, instance2, length):
 distance = 0
 for x in range(length-1):
 distance += pow((instance1[x] - instance2[x]), 2)
 return math.sqrt(distance)

def getNeighbors(trainingSet, testInstance, predictions, name,k):
 distance=[]
 length = len(testInstance)-1
 for x in range(len(trainingSet)):
 dist = euclideanDistance(testInstance, trainingSet[x], length)
 if dist <=k:
 predictions[name.index(trainingSet[x][3])]+=(dist)

def frequency(arr,string):
 count=0

#744 20

 for x in range(0,len(arr)):
 if arr[x]==string:
 count+=1
 return count/len(arr)

def printResults(name,predictions,number):
 total=sum(predictions)
 for x in range(len(name)):
 print(name[x]+": "+str((predictions[x]/number[x])/(total/sum(number))))

def determine(location):
 result=[]
 trainingSet=[]
 testSet=[]
 others=[]
 split = 1
 trainingSet=[]
 testSet=[]
 name=[]
 predictions=[]
 number=[]
 filelist=os.listdir(path)
 for files in filelist:
 filename=os.fsdecode(files)
 if filename.endswith(".csv") and filename!=location:
 loadDataset(path+'/'+files, split, trainingSet, testSet)
 loadDataset(location,split,testSet,others)
 for x in range(0, len(trainingSet)):
 if trainingSet[x][3] in name:
 number[name.index(trainingSet[x][3])]+=1
 else:
 number.append(1)
 name.append(trainingSet[x][3])
 predictions.append(0)
 print('Train set: ' + repr(len(trainingSet)))
 print('Test set: ' + repr(len(testSet)))
 for x in range(len(testSet)):
 getNeighbors(trainingSet,testSet[x],predictions,name,20)
 printResults(name,predictions,number)

print(sample[-6]+sample[-5])
determine(sample)

#744 21

Appendix 3: full result for Problem 1

Participant Testing Size AI Deduction Relative percentage
A 1355 Person 2 1.0043
B 1370 Person 9 1.0019
C 1346 Person 5 1.0015
D 1441 Person 3 1.0022
E 1335 Person 4 0.9768
F 1347 Person 11 1.0047
G 1346 Person 6 0.9959
H 1343 Person 8 1.0018
I 1339 Person 10 1.0027
J 1427 Person 7 1.0022
K 1343 Person 1 1.0012
Q 322 Person 10 1.0021
R 316 Person 11 1.0011
S 314 Person 8 1.0022
T 330 Person 1 0.9996
U 312 Person 6 0.9964
V 305 Person 5 1.0007
W 311 Person 3 1.0012
X 318 Person 7 1.0012
Y 317 Person 9 1.0009
Z 320 Person 4 0.9812

#744 22

Appendix 4: full results for P2

Time Pickup Region) Value Latitude Longitude
0-1 48359 111949.85479396600000 40.21312128264600 -74.2303450021617
1-2 48359 112211.01109667300000 40.21312128264600 -74.2303450021617
2-3 48359 73248.45828872830000 40.21312128264600 -74.2303450021617
3-4 48362 56361.64437394580000 40.21328821754970 -74.2300951105553
4-5 48362 57249.72493114790000 40.21328821754970 -74.2300951105553
5-6 48357 17331.24388891330000 40.21300999271020 -74.2305115965660
6-7 48359 20906.27643650770000 40.21312128264600 -74.2303450021617
7-8 48359 45420.92235307860000 40.21312128264600 -74.2303450021617
8-9 48359 79301.77904409620000 40.21312128264600 -74.2303450021617
9-10 48359 96550.20114810130000 40.21312128264600 -74.2303450021617
10-11 48359 80932.88638860390000 40.21312128264600 -74.2303450021617
11-12 48359 88915.10742165890000 40.21312128264600 -74.2303450021617
12-13 48359 87210.05336007580000 40.21312128264600 -74.2303450021617
13-14 48359 77560.33985656570000 40.21312128264600 -74.2303450021617
14-15 48359 84365.87335377320000 40.21312128264600 -74.2303450021617
15-16 48359 110128.33070740800000 40.21312128264600 -74.2303450021617
16-17 48359 89953.33234278660000 40.21312128264600 -74.2303450021617
17-18 48359 122150.51200546400000 40.21312128264600 -74.2303450021617
18-19 48359 142601.60501567000000 40.21312128264600 -74.2303450021617
19-20 48359 158730.57781477300000 40.21312128264600 -74.2303450021617
20-21 48359 167280.96579869100000 40.21312128264600 -74.2303450021617
21-22 48359 168402.46171696200000 40.21312128264600 -74.2303450021617
22-23 48359 163595.88267136600000 40.21312128264600 -74.2303450021617
23-24 48359 102264.13065182100000 40.21312128264600 -74.2303450021617

#744 23

Appendix 5: code for P2

import csv

datalocation='/Users/******/Desktop/2016_Green_Taxi_Trip_Data.csv'
##Variables
inilong=-74.0445
inilat=40.6892
wt=-7
wd=-8
wf=10
wtip=3
sep=0.02

def change2time(string):
 t=string.split(" ")[1]
 time=int(t.split(":")[0])*60+int(t.split(":")[1])
 return time

def loadDataset(filename):
 data=[]
 with open(filename,'r') as csvfile:
 lines=csv.reader(csvfile)
 dataset=list(lines)
 for x in range(1,len(dataset)):
 data.append(dataset[x])
 return data

def value(x):
 return wd*distance[x]+fare[x]*wf+wtip*tip[x]+wt*time[x]

def cell(maxlat,minlat,maxlong,minlong,sep,time1,time2,time):
 region=[]
 for x in range(0,int((maxlong-minlong)/sep)+1):
 for y in range(0,int((maxlat-minlat)/sep)+1):
 region.append(0)
 for i in range(0,len(pulong)):
 if data[i][0]<=time1 and data[i][1]>=time2:
 region[int((int(pulong[i]-minlong)/sep)*(int((maxlat-minlat)/sep)+1)+int((pulat[i]-
minlat)/sep)+1)]+=value(i)
 return region

data=loadDataset(datalocation)
time=[]
distance=[]
fare=[]
pulong=[]
pulat=[]
tip=[]

for x in range(len(data)):

#744 24

 for y in range(0,2):
 data[x][y]=change2time(str(data[x][y]))
 time.append(int(data[x][1])-int(data[x][0]))
 distance.append(((float(data[x][3])-inilat)**2+(float(data[x][2])-inilong)**2)**(1/2))
 fare.append(float(data[x][7]))
 tip.append(float(data[x][10]))
 pulong.append(float(data[x][2]))
 pulat.append(float(data[x][3]))

maxlat=max(pulat)
minlat=min(pulat)
maxlong=max(pulong)
minlong=min(pulong)
print(maxlong,minlong,maxlat,minlat)
for x in range(0,1440,60):
 region=cell(maxlat,minlat,maxlong,minlong,sep,x+60,x,data)
 print("region "+str(region.index(max(region)))+" value:"+str(max(region)))
 print("latitute"+str(minlat+sep*region.index(max(region))/((maxlong-minlong)/sep))+"
longtitute"+str(minlong+sep*(region.index(max(region))/(maxlat/sep-minlat/sep))))

